欢迎访问唐山市三川钢铁机械制造有限公司
销售部:13832895888
供应部:13633361888
邮箱:tsscjx@cegoogle.cn
sanchuan@cegoogle.cn
传真:0315-2969909
网址:www.tsscjx.com.cn
地址:唐山市路南区女织寨村南
氧枪是将高压高纯度氧气以超音速速度吹入转炉内金属熔池上方,并带有高压水冷却保护系统的管状设备。又叫喷枪。它是氧气顶吹炼钢的重要设备。在吹炼过程中,氧枪不但要承受火点2500℃左右的高温区的热辐射,还要承受钢和渣激烈的冲刷,工作条件十分恶劣。因此氧枪要有牢固的金属结构和强水冷系统,以保证它能耐受高温、抗冲刷侵蚀和抵抗振动。氧枪最先应用于平炉炼钢炉顶吹氧,1952年氧气顶吹转炉炼钢法问世,氧枪成为它的关键设备。此后,氧枪的应用范围又扩大到电弧炉和钢包精炼炉等领域;功能也从单一喷吹氧气发展到兼能喷吹造渣粉剂、燃烧粉剂的复合氧枪以及具有二次燃烧功能的分流式或双流式多层氧枪。氧枪对吹炼的影响作用是通过氧气射流流股与熔池的相互作用来实现的,而这种作用主要取决于射流到达熔池表面时的速度大小及其分布,因此氧枪喷头的各项工艺参数的寻优与结构的优化设计非常重要。应用领域:氧枪主要应用在钢铁行业、冶金行业等。氧枪,是氧气转炉炼钢中的主要工艺设备之一,其性能特征直接影响到冶炼效果和吹炼时间,从而影响到钢材的质量和产量。
转炉自动化,工业自动化生产工艺。典型的氧气转炉自动化系统由过程控制计算机、微型计算机和各种自动检测仪表、电子称量装置等部分组成。按设备配置和工艺流程分为供氧系统,主、副原料系统,副枪系统,煤气回收系统,成分分析系统和计算机测控系统。有些大型的转炉自动化系统除了有转炉本身的控制系统外,还包括有铁水预处理系统、钢水脱气处理系统和铸锭控制系统等。氧气转炉冶炼周期短、产量高、反应复杂,但用人工控制钢水终点温度和含碳量的命中率不高,精度也较差。为了充分发挥氧气转炉快速冶炼的优越性,提高产量和质量,降低能耗和原料消耗,需要完善的自动化系统对它进行控制。供氧系统编辑在转炉吹炼中,供氧系统主要用于控制吹氧量和氧枪位置(即氧枪与钢水液面的距离),完成以下功能: ①测量氧气压力、流量、氧耗量、氧纯度等参数,并对氧流量进行闭环控制。②测量氧枪冷却水温度、压力和流量。③采用电子逻辑或微型机控制装置在吹炼不同阶段改变氧枪位置,其定位精度为±10毫米。主、副原料系统编辑转炉主原料(铁水和废钢)和副原料(石灰、白云石、矿石、萤石、铁皮等)的称重误差和成分误差,直接影响炼钢终点命中率和钢的质量。这个统用以保证主、副原料的准确称量。它包括 3个部分。①电子秤:用以对铁水、废钢、铁合金和钢水进行称重,并能自动去皮;②副原料称重和上料控制:当高位料仓中的副原料用光时,可自动地将地下料仓的副原料送入高位料仓,它采用料位检测器检出料仓料位信号,用皮带秤称重,用电子逻辑或微型机控制上料;③副原料自动配料控制:根据人工设定和计算机设定的副原料的配比,入炉副原料由料斗秤称量后自动按量装入。副枪系统编辑吹炼过程中用于测量钢水温度和含碳量的检测装置,主要包括两个部分。①测温定碳装置:它由测温定碳和测液面复合探头、温度和碳变送器、微型机和阴极射线管显示器等组成。测试时,副枪将探头插入钢水内测温、取样,测出的温度和含碳量信号经微型机处理后,在显示器上显示并传送到过程计算机。②副枪顺序控制装置:它由探头、电子逻辑线路或微型机构成。副枪系统自动给出所需的探头,自动装探头,检查探头是否接通,然后自动快速下枪,移动到变速点时则由快速改成慢速,当移动到测试点时便准确停车,定位精度为±10毫米。待取样完成后,快速提升,到变速点时改为慢速提升,到达最高点时则自动停车。待定碳信号出现后,则自动拔掉旧探头。煤气回收系统编辑用以保证煤气回收正常运行,它由各种变送器、分析仪和微型机组成。首先进行炉口微压差(±50帕)测量和自动控制,炉中微压差经变送器变成标准电信号后,由调节器控制煤气管道的闸板阀,使炉口保持正压,防止吸入空气。其次进行煤气中CO、O2含量的分析和CO回收的自动控制,采用红外线CO分析仪、磁氧分析仪(精度为±1%)或质谱仪分析CO、O2含量,用可编程序控制器来控制煤气回收的操作。最后进行煤气流量测量。所用方法是先在废气管道中取出差压信号,然后再用差压变送器将此信号变为电信号进行测量。成分分析系统编辑用直读光谱仪或 X荧光分析仪来分析铁水和钢水的成分。 X荧光还能分析矿石、炉渣的成分。专用计算机对分析值进行处理后将结果打印出来,并将它们传送到过程控制计算机,为控制作准备。钢水中的溶氧量则用氧化锆定氧探头测出。
【中国环保在线 应用方案】为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,推动大气污染防治领域技术进步,满足污染治理对先进技术的需求,生态环境部编制并发布了2018年《国家先进污染防治技术目录(大气污染防治领域)》(生态环境部公告2018年第76号)(简称《目录》)。在生态环境部指导下,中国环境保护产业协会具体承担《目录》的项目筛选和编制工作。为便于各相关方使用《目录》,中国环保产业协会配套编制了《目录》典型应用案例,将陆续在微信平台上发布。所有案例均来自目录入选项目的申报材料,案例内容经业主单位和申报单位盖章确认。技术概要工艺路线转炉一次烟气经湿法洗涤除尘后进入湿式电除尘器除尘,形成湿法除尘与双电场湿式电除尘器串联形式的复合除尘系统。湿式电除尘极板上收集的粉尘经水冲洗后送至水处理厂处理。混铁炉倾动齿条施工主要技术指标出口颗粒物浓度可<20mg/m3。技术特点湿法洗涤结合湿式电除尘,大幅提高转炉烟气除尘效率。适用范围钢铁行业转炉一次烟气除尘。工艺流程转炉一次烟气依次通过一文、重力脱水器、二文、双电场卧式电除尘器、风机。如果烟气中一氧化碳含量未达到20%,将通过烟囱排放到环境中,如果含量达到20%,将回收到煤气柜中。除尘系统有三条管道,即定期冲洗系统管道、连续雾化系统管道和污水回流系统管道。在出钢结束后,风机抽拉的烟气为环境空气,二文位置不再需要使用更多的浊环水,可以均出多余浊环水对极线极板进行冲洗,冲洗水通过灰斗流到下方的污水罐,然后,通过污水泵及污水管道送至污水处理厂处理。雾化水采用净环水,24h持续喷雾,具有调理烟气的作用。每个电场配有一台高压电源,高压电源的端子采用氮气吹扫密封。主要工艺运行和控制参数极距400mm,运行压力损失≤300Pa,设计电负荷250kW/kVA,运行电耗40kW,氮气消耗量200m3/h,采用加热器加热到100℃以上,送入瓷瓶。净环水(雾化水)2m3/h,24h使用。浊环水(冲洗水)35m3/h,每冶炼周期使用约4min。丹东专业混铁炉倾动齿条湿式电除尘器设计参数:入口颗粒物要求不高于300mg/m3,处理后的烟气颗粒物排放浓度低于30mg/m3。实际湿式电除尘器入口颗粒物浓度在120mg/m3~140mg/m3,高压电源一次电压控制在300V左右。
钢结构建筑属于装配式建筑范畴,即先在工厂内进行部件部品的预制,得到施工所需的钢构框架,之后运到现场拼装。钢结构行业分析指出,大力发展钢结构建筑是贯彻落实绿色低碳循环要求、提高建筑工业化水平的重要途径,是稳增长调结构转型升级和供给侧结构性改革、化解钢铁行业产能过剩的重要举措。钢材的基本特点是强度高、自重轻、整体刚性好、变形能力强,因此特别适宜用于建造大跨度和超高、超重型的建筑物。此外,钢材匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产。现从三方面分析钢结构行业技术特点:
废钢是钢铁工业的绿色原料,随着取缔“地条钢”和国家对环保的严格要求,各大钢铁企业都在大力提高废钢比。目前,我国电炉钢的比例还不到10%,转炉流程仍是我国产钢的主流程,因此有必要开发高效、清洁的转炉流程提高废钢比技术。目前,转炉流程大生产中采用的提高废钢比的手段主要有:废钢预热(铁水包预热、转炉炉前及炉后预热等)、转炉加入补热剂(焦炭、焦丁、FeSi、SiC等)。但上述两类提高废钢比的技术均有一定的不足:前者需要专门的加热设备,后者往往以牺牲钢水质量为代价。此外,国外还开发了KMS工艺,但因存在喷粉元件寿命短等不足,并没有在大生产中广泛应用。因此,如何在不污染钢液的前提下提高转炉废钢比,已成为亟须解决的关键共性难题。此外,单转炉超40%的大废钢比技术也一直是冶金工作者关注的热点课题。 转炉二次燃烧氧枪是一种在不污染钢液的前提下提高转炉废钢比的技术。二次燃烧氧枪是在传统炼钢氧枪的基础上,通过设计合理的副孔,使主孔射出氧气射流进行脱碳反应,利用副孔射出的氧气射流与炉内一氧化碳燃烧产生大量的热量,使转炉自身热量得到较充分利用,进而提高转炉废钢比。尽管国内外已对转炉二次燃烧氧枪技术进行了大量研究,且有的已达到工业应用水平,但目前国外关于该技术在大工业生产中规模化应用的报道很少,而国内目前还未见该技术的大生产规模化应用。因此,有必要对二次燃烧氧枪技术进行深入研究并使其实现工业化应用。本文首先进行了提高废钢比的转炉二次燃烧氧枪技术大生产规模化应用研究;在此基础上,基于二次燃烧氧枪技术,研究者提出了一种废钢比超过40%的单转炉大废钢比技术,并通过大生产试验,验证了其大生产应用的可行性,为其大生产规模化应用奠定了基础。
氧枪的结构及性能在很大程度上决定着氧气炼钢的效果。特别是对于顶吹氧气转炉炼钢过程,氧枪起着主导全局的作用。它支配着氧气射流与熔池的接触面积、氧气射流的穿透深度、熔池的搅拌状态、元素的氧化程度、熔池的升温速度、渣中氧化铁含量等重要工艺因素,因而对化渣、喷溅、杂质的去除、转炉炼钢终点控制以及各项炼钢技术经济指标都起着重要作用。氧枪由喷头、枪身和枪尾三部分构成。喷头由工业纯铜制造,是氧枪的最重要的部分。是几种喷头的结构,a、b、c为氧气转炉用喷头,高压氧(0.6~1.0MPa)由内管供入,在喷头处分流进入若干个先收缩后扩张的拉瓦尔型喷嘴,一般中小转炉采用3个喷嘴,称为三孔喷头,大炉子(100t以上)用4~6个喷嘴。为了使炼钢产生的CO气在炉内燃烧成CO2(二次燃烧)的比例增大,需应用双流喷头或分流喷头。双流喷头有利于主氧流和副氧流比值的调节,但要在枪身处增加一层副氧流道。平炉和电弧炉所用喷头,氧气沿内管和中管间的空隙流入,喷嘴为直圆筒形,但孔数较多,而且和中心线的夹角也大得多。枪身为3根(双流氧枪为4根)同心的无缝钢管,下端连接喷头,上端和枪尾相连。枪尾包括供氧、进水和排水支管及连接法兰和密封胶圈,通过枪尾和车间的氧气管网和高压水管网相连接。